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We present canonical procedures for the manipulation of whole classes of 
Lagrangians that share the same transformation law and functional dependence 
but are otherwise arbitrary in functional form, and for the derivation therefrom 
of generalized conserved quantities. The techniques are demonstrated on the 
class of scalar density Lagrangians L = L G + LEM , where L G is a function of the 
metric and its first and second derivatives and LEM is a function of the metric 
and a vector potential and its first derivative, which generate the Einstein- 
Maxwell equations (without cosmological constant). These procedures should 
be of interest to those studying alternate formulations of general relativity, those 
deriving new field theories, and others working with general of modified 
Lagrangians. 

1. I N T R O D U C T I O N  

In  this p a p e r  we p resen t  canon ica l  p rocedure s  for  the  m a n i p u l a t i o n  o f  
a genera l  Lagrang ian ,  wi th  k n o w n  func t iona l  d e p e n d e n c e  and  t r ans fo rma-  
t ion law bu t  u n k n o w n  func t iona l  form, and  for  the subsequent  de r iva t ion  
o f  genera l i zed  conse rved  quant i t ies .  These  techniques  are thus a pp l i c a b l e  
to whole  classes of  Lagrang ians  that  share  the  same func t iona l  d e p e n d e n c e  
and  t r ans fo rma t ion  law. In  pa r t i cu la r  we may  a p p l y  them to the class o f  
sca lar  dens i ty  Lagrang ians  tha t  are funct ions  o f  the  metr ic  and  its first and  
second  der ivat ives ,  the  Lagrang ians  of  genera l  relat ivity.  Also,  while we are 
conce rned  here  only  wi th  sca lar  dens i ty  Lagrang ians ,  it shou ld  be no ted  
tha t  these  techniques  are  equa l ly  app l i cab l e  to nonsca l a r  densi t ies  p r o v i d e d  
the c o r r e s p o n d i n g  t r ans fo rma t ion  law is known.  

His tor ica l ly ,  the  s tudy  o f  field theor ies  and  conserved  quant i t ies  has  
involved  the de t e rmina t i on  o f  a single Lagrang ian  and  an a p p l i c a t i o n  o f  
we l l -known va r i a t iona l  techniques  and  Noe the r ' s  theorem.  However ,  
m o d e r n  theore t ica l  inves t iga t ions  have b e c o m e  more  soph i s t i ca ted  and  the 
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work presented here may prove of value to those interested in theories with 
several Lagrangians, in the extension of current theories through the addition 
of extra terms in the Lagrangian, or in the development of new field theories. 
But these procedures can also be applied to classical general relativity to 
clarify the somewhat confused state of conserved quantities in the theory, 
and it is this problem we address in this paper. In general relativity there 
are no fewer than three energy-momentum complexes in common use 
(Einstein, 1916; Landau and Lifshiftz, 1975; MOiler, 1972) and an infinite 
number are known (Goldberg, 1958; Komar, 1959); none has proved wholly 
satisfactory. From a theoretical point of view, these complexes are now 
somewhat out of vogue owing to recent progress in coordinate-independent 
quantities (e.g., Penrose (1982)), but, as they are still in widespread use 
and are likely to remain so, they are not devoid of interest and will provide 
well-known examples for the application of the technique. Thus, in this 
paper we apply our canonical procedure to a Hilbert variation of a classical 
general relativistic scalar density Lagrangian, providing a compact deriva- 
tion of a number of new and well-known momentum complexes and 
generalizations thereof. In a subsequent paper (Churchill, 1987) we apply 
the canonical procedure to a Palatini variation of a general class of 
Lagrangians based on that of Nissani (1985). This class includes, as a special 
case, the classical general relativistic Lagrangians of Lovelock (1969). 

We begin, in Sections 2-5, by considering the general (Hilbert) variation 
of a scalar action 2 

S = f Ld4x (1) 

where the scalar density Lagrangian L is a sum of electromagnetic and 
gravitational parts. We include the electromagnetic part in the Lagrangian 
and derive its contribution to the conserved quantities, despite the fact that 
the electromagnetic energy-momentum density can be (and usually is) 
obtained directly from the Einstein-Maxwell equations. Generally, the 
electromagnetic energy-momentum density is derived as a conserved quan- 
tity only within the framework of classical electromagnetism. However, the 
derivation involves manipulations to ensure symmetry. We perform the 
operation here, in the presence of gravity, because the symmetrization 
process may also be applied to the gravitational part of the combined 
energy-momentum complex and provides insight to the interpretations of 
this and intermediate complexes. In doing so we are led (for the first time, 
to the best of my knowledge) to a derivation of the Landau and Lifshitz 
pseudotensor via a variational principle. 

2 W e  s e t  c = 8 ~ - G  = 1. 
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In Section 2 we manipulate the transformation relations for L and its 
arguments in order to investigate the symmetry and tensor properties of  the 
partial derivatives of  L and deduce certain invariance relations between 
them. In Section 3 we derive the variation of the action and write the 
integrand of 8S as the divergence of a vector density ha,~. At this point 
most authors specify the variation as an infinitesimal translation and use 
the properties of  a specific Lagrangian to obtain a mixed energy-momentum 
complex hab, which is then "integrated ''3 to form the superpotential. Komar  
(1959) derives an improved superpotential from the Hilhert Lagrangian 
(~/-g)R in terms of an arbitrary variation 8x a. In contrast, we use the 
invariance relations of  Section 2 to "integrate" a strongly conserved quantity 
h a, which is general in the choice of both the variation and the Lagrangian. 
The resulting expression has several advantages. It is mathematically simpler 
in that most of  its properties may be deduced by inspection. Also, by 
specifying the appropriate variation, one may generate both a mixed and 
contravariant energy-momentum complex and an angular momentum com- 
plex for general scalar density Lagrangians. The complexes hab and h ab are 
derived in Section 4. The angular momentum complex h abe is presented in 
Section 5. We show that the moment  of  h ab constitutes only part  of  h abe. 
We then use the conservation of h abe to find the unaccounted-for  "spin"  
energy contribution of the remaining part  of  h abc, which is added to h ab to 
produce a symmetric total energy-momentum complex H ab. Finally, in 
Section 6 Lovelock's Lagrangian is considered and new complexes are 
generated along with generalizations of  those in common use. 

2. INVARIANCE RELATIONS 

In this section we use the transformation laws of the Lagrangian and 
its arguments to derive symmetry and invariance relations in the functional 
derivatives of  the Lagrangian. While these relations are not new (see, for 
instance, Lovelock and Rund (1975)), they seem to have found little applica- 
tion in the literature. We will see that we may generate a surprising amount  
of  general information, without reference to the exact functional form of  
any specific Lagrangian, which may be directly applied to the "integration" 
of  a general conserved quantity in Section 3. 

We begin by considering a scalar density Lagrangian L of the form 

L = L~ + LEM (2) 

where LG and LEM will be considered as gravitational and electromagnetic 

3Here and in the following we will loosely use the term "integrate" to represent the phrase 
"'take the antidivergence." 
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terms with the functional  dependences  

LG = LG(g~b, g~b,~, gab,~d ) (3a) 

LEM = LEM(gab, dPa, ~)a,b) (3b) 

and L defines an action scalar S given by (1). We introduce the fol lowing 
notations for the derivatives of  L: 

Ao =. OL A i J k  =-- OL A i j k  l =-- OL (4a) 
Og~ ' Ogij, k ' Ogij, kl 

OL OL 
~ =- .... qbo _= (4b) 

a4,~' o,/,~,j 

which obey the symmetry  relations: 

A ij = A ji (5a) 

A/jk = A j"  (5b) 

A ~kl = A jikl = A Olk (5c) 

We now consider the t ransformat ion laws for/S(~0, g0,k, g0,kl, ~bi, ~bi, j) 
and its arguments.  Differentiating these relations with respect to the argu- 
ments o f  L yields t ransformat ion  laws for the functional  derivatives o f  L, 
f rom which we see that A "boa and qb ab t ransform as tensor densities, while 
A ab, A abe, and qb ~ do not  [as a conseuqence o f  (6c) below, d9 ~ is, in fact, 
tensorial]. 

Finally, we derive the invariance relations. The procedure  consists o f  
two steps: we differentiate the t ransformat ion laws o f / 2  and its arguments  
with respect to the coordinate  t ransformat ion axP/Os q and its derivatives, 
whereupon  we consider  the particular case o f  the identity t ransformation,  
After some manipula t ion  we find 

A iqrs + A irsq + A i~qr = 0 (6a) 

A ijkl = A kl0 (6b) 

q bqr + ~ q  = 0 (6c) 

A pq~ + A p~q = 2AOq~Fp U (6d) 

A qrp = Fq~jA ~ + F ~ A  ')pq - FP~A uq~ (6e) 
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A ~  - F ~ A  ~ ' j  = 2(A~b~d,d -- AOb~d;a) (6f) 

2 EMAiqgip + ~f)qf~p "~- (~qJt2?jp ~- t~qpLEm (6g) 

iq " "" 2 GA gip "b 2 A ' q k g i p ,  k "[- Avqgij, p + 2Aiqktaoip, Kl-" "j- z.,z")Aijkq--x gij, kp = t~qpLO (6h) 

where 

Fjp =- ~bp, j - ~bj, p (6i) 

and EM Aiq and G Aiq are, respectively, the electromagnetic and gravitational 
contributions to A iq [with an appropriate Lagrangian EM Aiq is just (~ / -g )T  iq, 
where T iq is the usual symmetric stress-energy tensor of the electromagnetic 
field]. These relations are completely general in that they hold for any scalar 
density Lagrangian (2) with functional dependences (3). 

3. THE VARIATION OF THE ACTION AND THE 
" I N T E G R A T I O N "  O F  T H E  C O N S E R V E D  C O M P L E X  h" 

We begin this section with a general variation of the action (1). Rather 
than separately treating each of the terms in (2) to individual variations, 
we subject the total Lagrangian to a simultaneous variation of the coordi- 
nates x a and potentials ~ba and gob. This permits the representation of the 
variation as a single infinitesimal coordinate transformation, which, in 
concert with the invariance relations derived in the previous section, permits 
the "integration" of a conserved quantity h a in terms of both an arbitrary 
variation and scalar density Lagrangian. The resulting expression is a 
generalization of Komar's complex. 

The general variation of the coordinates and potentials of the action 
(1) results in the expression (Barut, 1965) 

8S= fl~ 6Ld4x + foR L6xa dS~ (7) 

where OR denotes the boundary of the region R. If  we require that ~x a and 
its first and second derivatives vanish on OR, then the invariance of the 
action yields the Euler-Lagrange equations 

E/j --- - A  U + AOkk -- A/Jk',k : 0 (8a) 

E i ___ _ ~ i  + ~u,j = 0 (8b) 

which, with an appropriate Lagrangian, reduce to the Einstein-Maxwell 
equations. Note that both E i and Eij are tensor densities. 

We now write 

6S = 2 f h ~.a d4x  (9) 
,I 
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and define the vector X a --- ~x a. In the following we derive a strong conserva- 
tion law by "integrating" the quantity h a without making reference to 
equations (8). 

Under the infinitesimal transformation ff~= x a + x  ~, the variations of 
the potentials may be written 

~go = -(X~;j + Xj,,) (lOa) 

6ch, = - ( 6 a X e ) , , -  F~,X ~ (10b) 

Taking the covariant derivative of equations (6g) and (6h) yields 

LEM;p = EMA ij gij;p + (~it~i,p -~ ~f)iJ ~i,j;p 

= (2 EMA'qg,p + ~qqSp + (~qJFjp);q (1 la) 

LG; p = G A  iJ gij;p + A O'k gij, k;p + A ijkl go, kt;p 

= (2 GAiqgip q- 2Aiqkgip, k + AiJqgij,p 

+ 2Aiqklgip, kl + 2Aijkqgo, kp); q (1 lb) 

Substitution of these into the expression for 6L gives 

6L = ( 2Eiaxi  + E~ qSixi);a 

+ [(A Uk - A~kt, l) 6go + A~Jkl6g~,t + ~'k6~b~],k (12) 

Thus we have the strongly conserved quantity 

ha ia -- l r ' ,a~ i = E  X~-r~lz ~X +l(A~a A~J-I 

1 ijal 1 ia 1 a +~A 6g~j , t+~  ~ c ~ + ~ L x  (13) 

After substituting for E i~, E ~, 3g~, 6g0,t, and 6the, h ~ may be "integrated" 
once more. The calculation yields 

h ~ = [l~akCb,O(" --Aijakxj;i +2xj(AkJ'~t;t q-l-ra2 l i l  .~lAilkj'Ul}j,k (14) 

This expression, which is somewhat unwieldy, may be considerably sim- 
plified by the introduction of the useful quantity 

~b~d =_ ~( A~bCd _ A~dcb) (15) 

From this definition and equations (5c), (6a), and (6b), we may show that 
Ill abcd has the following properties: 

A abcd = lit abcd "b ~t abdc 

~abcd = __~lcbad = __~adcb = ~ badr = ~lcdab 

I~ abcd .~ ~j adbc .~_ ~[lacdb . ~ -  0 

(16a) 

(16b) 

(16c) 
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Then, after the substitution of (16a) into (14), a short calculation yields 
h a 1 ak n --abkl ,-,~abkl \ 

= (2(J~ ~nX. "~-~ X b ; l - - Z ~  I ;IXb);k 

= (�89 a % , X ,  +--obkt ,,--obkt , 
~J Xb, l - -ZqY ;IXb),k (17) 

It is readily apparent from (17) that h a is a vector density with vanishing 
divergence (if we wish, we may define h ~ as the divergence of an antisym- 
metric superpotential, itself a tensor density). Thus, (17) constitutes a strong 
conservation law, general in the Lagrangian (2), which generates a conserved 
quantity for any specified variation XL This new expression constitutes a 
generalization of Komar's complex. 

4. DERIVATION OF CONSERVED QUANTITIES FROM h" 

In order to generate physically interesting conserved quantities from 
the complex h a we consider the variation of the previous section as given 
by an infinitesimal transformation defined in terms of an arbitrary set of 
independent parameters $ k a . ,  where the capitals represent sets of indices. 
That is, we write 

X ~ = f " a "  (~kAB (18) 

where f " a  B is some function of the coordinates and potentials and the 3kA,, 
which are just the infinitesimal generators of the group whose "mot ion"  
represents the symmetry of the spacetime, are to be considered as arbitrary 
but predetermined, and thus constant with respect to the coordinates. 

As in Hamilton-Jacobi theory we may then write 

3S /2  6k A,  = f h"A" dSa (19) 

(note that, up to a linear transformation, this fixes the coordinates.) Now, 
by specifying the appropriate infinitesimal generators 6kAB, we may write 
the "momenta"  Ps, P '  and the "angular momentum" Y'~ as surface integrals 
of the energy-momentum complexes h~s, h at and the angular momentum 
complex hatL These 3k a .  derive from the infinitesimal vectors 

f~ = y~,x ~ + K s (20a) 

~, = y, ,x" + ~, (20b) 

where 7,, is antisymmetric. But ( ' ,  ~:, are just the Killing vectors of Mink- 
owski space and do not generally represent true symmetries of the spacetime. 
Only by integrating near infinity on an asymptotically flat spacetime may 
we be sure of obtaining valid results. Thus the motivation for the term 
"complex";  these objects are not true momentum densities and, in general, 
will not exhibit the corresponding local properties. 
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Letting 

X n ..= ( ~ / - g ) " - 1 6 n  s 8 k  s 

we obtain from equation (17) the mixed complex 

(,)h ~ = ls t  - g )  q), [(~/--g)n-lgbs],l~jabkl 

- 2(x/--g)"-lgb.~b'=bkt,}, k 

and, if we let 

(21) 

(22) 

)(.n = ( ~ / _ _ g ) n - - l  g n t ~ k  t (23) 

we in turn generate the contravariant complex 

at rl,%/ x n - - l ( ~ a k - -  t (,)h = LEt - g )  cp + ( x / - g ) " - l d O  a t k l - z t v - g ) ' ' /  ,,-1--atk~q, M,k" (24) 

where we have written (~/-g)"-I  to denote x / -g  to the power n - 1  and 
(,)h a' to denote the weight n complex. 

With the introduction of a general relativistic Lagrangian, objects 
derived from equations (22) and (24) will, under the appropriate coordinate 
conditions, correctly give the global values for energy and momentum. 
However, equation (24) is not symmetric and thus the moment of (,)h ~' 
does not define a conserved angular momentum complex. Further, both 
(,~has and (n)h a' contain a bothersome term in ~ak. With the introduction 
of the field equations (8a) into these expressions we find those parts 
containing electromagnetic terms to be 

a an 1 n--1 ak  (n)tEM s=(~/--g)n-lEMA g,s+[~(~/-g)  qb r (25a) 

(.)tEM at = ( ~ / _ g ) . - 1  EMAa, + [ l (~ /_g )n -a~ , , k r  k (25b) 

[recall that with an appropriate Lagrangian EMA a' = (~/--g) T~'], from which 
we see that the final terms must be eliminated if we are to obtain correctly 
the usual electromagnetic stress-energy tensor. These terms may be discarded 
ad hoc since they are divergenceless. However, it is instructive to seek a 
more illustrative basis for their elimination, which may lend itself to some 
physical interpretation. An appropriate procedure is suggested by appealing 
to electromagnetic field theory. 

In the absence of a gravitational field, both equations (25a) and (25b) 
represent the same object 

r at = EMAat + (lcI~akq~ t), k (26) 

which, for the usual Maxwell Lagrangian, reduces to the nonsymmetric 
stress-energy tensor (Landau and Lifshitz (1975)), 

__ 1 j t  ai at  ij tEM at-5(-4&~,j*7 F + ~1 F u F  ) (27) 
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where 77 a' is the Minkowski metric. Equation (27) can be symmetrized, 
producing the normal electromagnetic stress-energy tensor, through the 
addition of  a divergenceless term obtained via the conservation of the 
angular momentum density. This term is interpreted as the as yet uncounted 
energy-momentum contribution of that part of the angular momentum 
density not represented by the moment of (27). The presence of this 
anomalous electromagnetic term in our calculation in the presence of 
gravitation seems to imply a similarly uncounted gravitational energy- 
momentum contribution, which we may include via a symmetrization of 
the whole gravitational-electromagnetic complex. We perform this 
operation in the following section. 

5. DERIVATION OF THE ANGULAR M O M E N T U M  COMPLEX 
AND THE SYMMETRIZATION O F  ( . )h  a' 

The angular momentum complex is generated from an infinitesimal 
rotation. Thus, we set 

X "  = ( x / - g ) " - ' ( g  "sx '  - g"~x') 6k,s (28) 

in which case (19) and (17) define the object 

( , ) h  a"  = ( , ) h  aSx ' - ( n ) h a t x  s -Jr- [ ( ~ / - - g ) n - l (  oaskt -- @atks) ].k 

+ [ l (x / -g ) " - '  (~atq5 s - ~"soSt  ) + ( x / - - g ) n - l , l ( ~ a s t t  -- ~b atsl) 

_ 2(, , /_g)"- ' (O ~s" _ g?"*');,] 

= ( n ) M  at* + (n )S  a's (29) 

where ( n ) M  ats is the moment of the complex (.)h at, and ( . ) S  a's represents 
an intrinsic field momentum (in quantum mechanics this term is used to 
derive spin). The energy inherent in the ( . ~ S  ats portion of (.)h a's has not 
yet been accounted for; thus, we add an additional "spin" term ( . ) s  a~ to 
(.)h a' to obtain a total energy-momentum complex 

( . ) H " '  = (,.)h a' + (,.)s a' (30) 

The expression for (.)s a' is derived through the following set procedure 
(see Corson, 1955). 

We begin by writing the conservation law for the angular momentum 
complex 

ha'S.a = h t S - h S '  + SatS, a (31a) 

--- h 's - hS' + (/* '*" -/Xs'a).a (31b) 

so that hU+/. '*aa defines a symmetric object. Thus, if we let 

s 's =/*'sa.a (32) 
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H ~' will vanish if and only if ~,b ,~ ~ /z ,b~ vanishes; that is, if and only if 
atb bta /x = - /x  (33) 

From equations (31)-(33) we may infer 

s '~ = � 8 9  (34) 

which, after substitution of S a" from (29), becomes 

(n)S  ts = - - 2 [  ( ~ / - - g ) n - l t ] . t t s a k ] , k a  - - ( ~ ) h  's (35) 

Substitution of (35) into (30) yields the total energy-momentum complex 

(~)H '~ : --2[ (~/--g)"-l o '~k],ka 
n-- I tsak = - [ ( ~ / - g )  a ],k~ (36) 

Reference to (16b) shows that (36) is indeed symmetric and vanishes under 
a divergence of either index. 

6. P R E S E N T A T I O N  OF P A R T I C U L A R  E N E R G Y - M O M E N T U M  
C O M P L E X E S  

The formalism presented thus far has been sufficient to generate the 
field equations, the general conserved quantity h a, the energy-momentum 
complexes (n~has and (n~h ~', the angular momentum complex (~h ate, and 
the total energy-momentum complex (n~H'S; all without reference to any 
particular Lagrangian. We will see that these quantities suffice to generate 
and generalize virtually all energy-momentum complexes currently known. 4 
We will now present the scalar density results. 

The most general scalar density Lagrangian that generates the Einstein- 
Maxwell equations without the cosmological term is (Lovelock, 1969, 1974) 

L =  LH-I- LM + a L  ~ + f i L  m + yL  v (37) 

where 

LH = ( ~ / - g ) R  (38a) 

L~ = e ijklRabijRabkl (38b) 

L~ = (~ / -g)[  R R  - 4 g i j R  ~ + RiJkiRklij] (38c) 

LM = ( x / - g ) F ~  (38d) 

L-~-~ e Ok' FoFk, (38e) 

and a,/3, and 3' are arbitrary constants. 

4The notable exceptions are the complexes of Einstein (1916) and Weinberg (1972). Weinberg's 
complex does not lend itself to derivation via a variational principle. However, our technique 
may be applied to the Einstein Lagrangian to derive Einstein's complex, although the nonscalar 
nature of this Lagrangian complicates the analysis and only the mixed weight-one complex 
(~hO~ (Einstein's) exists. 
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The resulting quantities relevant  in the calculat ion of  the complexes are 

H~abcd = __�89 __ g adg be) (39a) 

et~tabcd lr,,,, i j a c n b d  --,,'~ i jbdr,  ac "" = - -~Z .~ .  ~ i j " l - Z e  1~ i j q - E ~ J a d R b c i j  

"" - -  i j a b n  cd - -  ijcd r* ab ", q-egbcRadij~-e 1~ o - re  ~ ij) (39b) 

~q obed = _ 2 ( , / _ g ) [  RaCbd _ ( g O ~ R ~  + g C~ R o~ _ g ~  ~ - g bCRa~) 

+ �89 (gabgCd _ g OdgbC)] (39C) 

MC~ ab = - 4 ( x / - g  ) F "b (39d) 

T (~  ab ,, abij r~ =,+e r/j (39e) 

Rewriting (17), (22), (24), and (36) in terms of  the quantities (39) yields 

h a = [�89 ak + 3, r@~k),;b,,X " + (Htp'~bk~ + a ,~0 abk' 

~ - - a b k l \  ,~ ~ a b k l  1 
P fl~ff )Xb,1 - -  ZOl o~q.t ; IXbJ ,k  (4On) 

akij = (2 lye  FO _(x/_g)Fak]dp, ,X, ,  _{�89 _g,Ugbk) 

1 /,~ i j a k n b l  - -  ,., i . jb l~ak  - -  i jalr ,  bk 
+ ~ O l ( Z E  ~ i j - I " Z E  1~ i j - ' ~ e  1~ ij 

-}- E i j b k R  alij d- E i j a b R  klij "~- e OklR abij ) 

+ 2 [ 3 ( x / - g ) [ R  akbt - (g~bRkt + gktR~ __ ga~Rbk 

gbkR. t )+ �89  at bk 
- - g  g )])Xb.t 

4 ijak b E ijbkR a ijab k + ~ a ( 2 e  R i; j+ ~;j+e R i;j)Xb),k (40b) 

( . )h , , s=[ �89  l(M~Ok + ~k 

+ [(~/--g)n-lgbs],l(Ht~abkl-t- O~ a~babktq - fl fl~I abkl) 

- 2a (~/_g)n-lgbs a~tabkl; i  ] (41a) 

= (2(x/--g)"-~[ye"kOFo -- (x / - -g )F"k]4~ 

n - 1  1 ab k l _ _ g a l g b k )  
- [ ( ( - g )  gbs]d{i(x / - -g)(g g 

_~_1 [,') ijak lT~ bl E ijal R bk 5a,,~..e " ij+2eiJbIRakO+ ij 

.4- E Obk R alij Jr- E qab R klij -.]- e ijkl R abij ) 
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+ 2 f l ( x / - g ) [ R  akb' - (gabRk '  + gktRab _ gatRbg _ gbkRa '  ) 

+ � 8 9  gkt _ ga,g bk)]) 

4 n - 1 i jak i jbk a ijab k + ~ a ( x / - g )  (2e Rs~; j+gbse  R ~; j+gbse R ~;j)),k (41b) 

( . )h  ~t = [ l ( x / - - g ) n - l ( M ( ~ a k  + " ) / y ~ a k ) t ~ ) t  q-  ( x / - - g ) n - l , l ( H t ] l a t k l  

"~- t~ tx~latk l -~ - [3 [3~I a t k l )  - -  2a (x / -g )  n-1 o~oatkl;l], k (42a) 

= ( 2 ( x / - - g ) ' - l [ y e a k O F ~ j  -- ( x / - -g )F"k]da  t 

_ ( x / _ g ) ~ - ~ . t { l ( ~ / _ g ) ( g a t g k ,  - g,,,g tk) 

.~  l ~ ( ' ~ o i j a k l )  tl -.L,') i j t l l ~ a k  ~ E i j a l R t k i j  
g t.~ \ ~ c, Jt,~. ij - - 1 -  E Jt'~ ij - -  

+ eUtkRagij + eUatRktij + eiJgtRatij ) 

+ 2/3 ( x / - g ) [ R  ~kt' - ( g ~ t R g ' +  gk 'Ra t  -- g " ' R  tk _ g tkR~,  ) 

+ � 8 9  g~lgtg)]} 

+ 4 a ( x / - - g ) ~ - l ( 2 e i J " k R t i ;  j + eUtkR~i; j + eiJatRki;j) ). k (42b) 

( , )H ~t = --2[(x/--g)"--l(nO~kl + a ~ , k l  +/3 ~o~,k,)],l k (43a) 

= {(x/_g)~ (ga~gkl _ galgtk)  + 2 a  ( x / - - g ) ~ - l ( e  Oakg ~'ij + e OttRaku) 

+ 4/3 (x / - -g)  ~ [ R  ~ka _ (g,,t g k, + gg 'R  at _ g a ' g  tk 

_ _  g tgR~, ) + �89 (g~t g kt _ g~t g tk) ]},,g (43b) 

Note that neither L~, L~, nor L v has any effect on the Einstein-Maxwell 
equations. L v does not contribute to the usual electromagnetic stress energy 
tensor [see (43)] and hence is rarely encountered. L~ and L~ both contribute 
to the complexes (41)-(43) and other objects derived from (40) and neither 
contribution vanishes with the connection, but at the same time they are 
nonzero in vacuum. The presence of the Riemann tensor in the a and /3 
terms is also worthy of note. These may prove of interest in studies of 
gravitational radiation. 

Having presented the general formulas, we now derive previously 
encountered energy-momentum complexes. Other than the weight-one 
and/3 terms in ( .)h~ [which can be found in Goenner  and Kohler (1974, 
1975)], these all require a =/3 = y = 0. 

Equations (40) now read 

h a = (�89 M l ~ a k l ~ n X  n 2i- H l [ l a b k l ~ b , l ) ,  k (44a) 

= [ �89  " + X  k'" --X'~;k)],k (44b) 
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which, aside from the electromagnetic term, is Komar's complex. Equations 
(41)-(43) become 

( n ) h a s  = {�89 ak n-1 d, abkll (45a) M dp 6s +[(x/--g) gbs],, H~Z J,k 
= �89 nFak6s + , /  . . . .  k . ,  t - g )  g g t g  . . . .  - g  . . . .  ) 

+ ( , / - g ) ~ - ~ , , ( 4 - g ) ( ~ , g  nk - ~ksg~ (45b) 
at d, abkl'l (46a) (,)h -- [�89 Mf~kak ff) t .~ (~ /__g)n- l , l  H~P ' d,k 

= - - � 8 9 1 6 2  k '  + ( ~ / - g ) ' - 1 3 G / - g ) ( g ~ ' g k t  - ga~g'k)] ,k  (46b) 

( n ) g  a t =  - 2 [ ( x / - g )  n-1 H~yatkl],ik (47a) 

= [ (x / -  g ) "  (ga tgk t  _ gatg tk)] , t  k (47b) 

Neglecting the electromagnetic terms, we see that (45) is a generalization 
of the (n = 1) M011er (1972) complex to arbitrary weight. Equation (46) is 
the generalization to arbitrary weight of  a complex briefly considered by 
Lorentz and Levi-Civita and later rejected by Einstein (see Pauli, 1958). 
For n = 1 the nonelectromagnetic terms vanish. Thus, introducing the field 
equations, we may write the gravitational part of (l)h ~t in the form 

(~) t~  = ( x / - g ) G  a' (48) 

where G ~' is the Einstein tensor. This complex was considered unsuitable 
because it permits the existence of nonempty spacetimes with zero total 
energy. Equation (47) gives the infinite family of complexes obtained by 
Goldberg, as generalizations of the Landau and Lifshitz complex, which is 
given by (47) with n = 2. To the best of my knowledge, this is the first time 
the Landau and Lifshitz complex has been derived via a variational principle. 

The complex ( . )H ~' is of interest on anther note. Setting n = 1 and 
substituting (36) into (8a), we have (dropping the weight subscript) 

H ~ = A ij --  A q k ,  k (49) 

This is just the expression given by Landau and Lifshitz (1975) for the total 
energy-momentum density of a nongravitational field (note that our 
definition c -- 81rG = 1 differs from that of Landau and Lifshitz). Landau 
and Lifshitz claim that the relation does not hold for gravitation, but part 
of their argument depends on interpreting the term on the left as the total 
nongravitational energy (the stress-energy tensor). With the appropriate 
interpretation of H ~ as a total energy-momentum complex this relation 
may also be seen to hold (in a global sense at least) in the presence of  gravity. 

7. CONCLUSIONS 

In this paper we have presented a canonical procedure for the derivation 
of conserved quantities for whole classes of Lagrangians that share the same 
transformation law and functional dependence but are otherwise arbitrary 
in functional form. The general technique was illustrated by its application 
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to the Hilbert variation of a class of scalar density Lagrangians for the 
general relativistic gravitational and electromagnetic fields. Invariance rela- 
tions, derived from the transformation relations of the Lagrangian and its 
arguments, were applied to permit the "integration" of a strongly conserved 
complex that is general in both the Lagrangian and the variation. 
Specification of appropriate variations led to the generation of mixed and 
contravariant energy-momentum complexes has and h a' and an angular 
momentum complex h a's, all general in the Lagrangian. Conservation of 
the angular momentum complex then permitted the construction of a sym- 
metric complex H% also general in the Lagrangian. Specification of par- 
ticular Lagrangians resulted in the presentation of new energy-momentum 
complexes and the presentation and generalization of virtually all such 
complexes previously known. This canonical procedure should be useful 
to researchers studying alternate formulations of general relativity, those 
deriving new field theories, and others working with general or modified 
Lagrangians. Finally, as to the future, it should be noted that while the 
complexes presented here have all been coordinate-dependent, these tech- 
niques are equally applicable to spinor or twistor formulations of general 
relativity, wherein lie hopes of generating coordinate-independent con- 
served quantities for general Lagrangians. It is possible that such work may 
lead to a variational derivation of quasilocal momentum densities with 
properties like those of Penrose's mass. 
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